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Informatics for Images

Classical image processing:
Fourier filtering methods
Correlation
Deterministic algorithms

Image file formats

Next-generation bioimage 
informatics:
Non-linear filters
Pattern matching
Probabilistic algorithms
Machine-learning methods
Monte Carlo randomized algorithms
Information integration
Image databases
Data mining
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Talk outline

 Three problems in single-particle analysis

B Clustering and classifying difficult data

B Automated picking/boxing of particles

B Model-free determination of view directions

 

 Graphical interlude: 

B Visualizing tomograms using UCSF Chimera

 

 Two exercises in tomography:

B 3D reconstruction using level sets

B Automatic triangulation of marker positions
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Single-particle analysis

 Three problems in single-particle analysis

 

B Clustering and classifying difficult data

B Automated picking/boxing of particles

B Model-free determination of view directions
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Lessons learned

 

 Alignment is dangerous

B Can generate class averages that are not supported by the
class members individually

B Requires careful analysis of the contents and variation of each 
class

B Preferable: automatic quality assurance to quantify how probable 
a model is given the observations

B and how much more probable it is than other models (null 
hypothesis)

 Future:

B Bootstrap, Monte Carlo sampling of model space...
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Particle picking

 Problem:

B Views are randomly distributed on images

B Must pick regions with particles from image

 Difficulty: high noise ➜ simple template matching does not work

 Approach: 

Initial picks by linear correlation

Use a Support Vector Machine (SVM) to select for 
correct particles according to a manually chosen data 
set
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Picking by template matching

Picking by
linear correlation

many
mis-picks

Apply SVM
to pixel vector
(reduced) of
the images

Coloring: training
data set
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Support Vector Machines

Machine Learning:
● Training (vs rules)

Support Vector Machine:

● Linear classifier

● Extended to higher polynomials

● Efficient calculation of the
separating hyperplane by
duality transform

From Duda et al., Pattern Classification
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Non-linearity

Linearly inseperable
Linearly separable
after introduction of pseudo-variable
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Improving picking using SVMs

M. Tacke, C. Best
2006

Receiver
operating
characteristics
for different
feature set 
sizes

[Logarithmic scale]
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Picking result

Ordered by
correlation value
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Improving picking using SVMs

M. Tacke, C. Best
2006

Receiver
operating
characteristics
for different
feature set 
sizes



Summary: Picking

B Beyond template matching

B SVM recognizes feature beyond simple comparison

B Future:

B Rotational invariance? -> need no alignment

B Real data: TPP2 on film
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Sorting images into views

 Basic problem in single-particle analysis:

B We do not know the projections angles

B Nor do we know the 3D structure of the object

 If we knew one, it would be simple...

 

 Approach:

B Harvest the only information we have:

B The similarity between images
B The knowledge that somehow these images can be 

arranged on the observation sphere



Sorting views into angles

B Problem:

How can we sort the views of a particle according 
to the viewing angle (elevation, azimuth) ?

B Answer: 

Similar angles ➜ similar images

B Does not require any knowledge about the actual 3D model!

B HOW?

Parameter estimation in a probabilistic model
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Parameter estimation

 Problem: 

We do know the images – why would we care about their 
probability distribution?

 Bayesian parameter estimation:

P(MjÁ) ,     P(Á|  M)

 This is done using Bayes' formula
 Simplified version: Maximum-likelihood estimation

Á  = max P(MjÁ)

The best angular assignments are those which make
the images most probable

Images

Viewing angles
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Self-organizing point map

 Joint probability distribution:

 Maximum-likelihood principle ➜ Hamiltonian:

Point-to-point potential ➜ multidimensional scaling

 Gradient descent solution

Attractive force Repulsive force
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Optimization process

“Spring embedding”

Attractive and repulsive
“force” between points
(=images) 

Minimum (=optimum) is
determined by how
similar the images appear

Abstract coordinate 1
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View 1

View 2

force depends
on similarity of views
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Similarity matrix

9x9 projections
of TPP2

Correlation matrix:

Pairwise correlation
max. over translations and 
rotations
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Result

Good
representation
of original
distribution of
viewing angles

Good as an
initial model
for iterative
refinement
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Tomographic classification
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Outlook

 Unified view of single-particle analysis:

B Simultaneous estimation of two unknowns:

B View angles
B 3D density distribution / shape

B Include additional information:

B Random conical tilt
B Tomography
B Anything in between

B Combine with advanced shape reconstruction (2nd part of talk)
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Graphical interlude

UCSF Chimera
Visualization platform for 

structural biology
NIH Resource for 

Biocomputing, 
Visualization, and 
Informatics

Mature platform, >10 yrs 
Python/C++ easily 

extensible

Visualizing tomograms using UCSF Chimera
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Tomography & Chimera

Tomography tools for Chimera

Master's thesis Karin Gross
(FH Weihenstephan/Bioinformatik) 

B Add slicing capabilities to
Chimera

B User interface for adjusting
viewing parameters

B Oblique sections

B Markers and segmentation
on slices

B Integrate semi automatic
segmentation (level set)

B Tools for 2D/3D rendering
of label sets
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Tomography & Chimera II
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Tomography & Chimera III
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Tomography&Chimera IV
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Two Exercises in Tomography

 Two exercises in tomography:

B 3D reconstruction using level sets

B Automatic triangulation of marker positions

 

 General goals:

B Less projections

B More resolution
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3D reconstruction using level sets

 “And now for something completely different...”

 

 Tomographic reconstruction:

B Reconstruct densities

B No further information about which densities and structures are 
to be expected

 Level-set tomographic reconstruction:

B Reconstruct shapes

B Makes use of additional information:

B Object has a surface (with certain properties e.g. curvature)
B Object has constant density
B Object is connected
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3D reconstruction using level sets II

 Expected advantages:

B More robust against missing wedge

B Works well when only a few projections are given

B e.g. Initial guesses for single particle reconstruction
B Combines segmentation and 3D reconstruction in one process
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Level set methods

PROBLEM:
How do you manipulate a geometric shape in a computer?

Classical solution: triangulation of surfaces
B Good for visualization, but difficult to manipulate

Level set methods:
B Describe surfaces as the zero levels of continuous scalar functions
B Control surface shape by differential equation governing the

scalar field
B Computationally expensive, but simpler and more 

IDEA: Form a shape until its set of projections fits the observed
projection
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Level set reconstruction II

So what does this mean?

Imagine a hilly island in
the sea

Different water levels
generate different coastlines

Continuous deformations
of the island can generate
very complex geometric
changes, e.g. dissociation
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Level set reconstruction
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Level set reconstruction
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Level set reconstruction
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Level set reconstruction
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Level set reconstruction
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Level set reconstruction
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Manipulating 3D shapes
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Reconstruction Algorithm

Algorithm:

Repeat:
B Calculate model

projection
B Compare to

observation
B Expand/contract

model accordingly

Ross T. Whitaker, Vidya Elangovan*, A direct approach to estimating surfaces 
in tomographic data, Medical Image Analysis 6 (2002) 235–249
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Reconstruction algorithm

Ross T. Whitaker, Vidya Elangovan*, A direct approach to estimating surfaces 
in tomographic data, Medical Image Analysis 6 (2002) 235–249
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Expected results

Ross T. Whitaker, Vidya Elangovan*, A direct approach to estimating surfaces 
in tomographic data, Medical Image Analysis 6 (2002) 235–249
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Current status

 Diploma thesis in bioinformatics of Andreas Grimm

 Cooperation with Ralf Zimmer (LMU)

 

B Implemented 2D and 3D algorithm

B Simple structures can be reconstructured using <10 projections

B Little distortion from missing wedge

 

 Outlook:

B Combine with single-particle algorithm

B Unify tomography and single-particle shape reconstruction

 



44Ringberg 2007

3D reconstruction by triangulation

“And now for something completely different”

3D reconstruction of marker positions
B Locate markers automatically in individual projections
B Calculate 3D positions by triangulation

Advantages:
B Need only a few projections
B Less chance for obscurations

Applications:
B K. Grünewald: Locating immunogold markers for glycoprotein spikes
B V. Lucic: Estimating alignment errors in tomograms
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Automatic localization of markers

Automatic localization of glycoprotein spikes by immuno-labeled gold
Problem: Markers at the top and bottom are obscured by the capsid
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Automatic localization of markers

Example tomogram
(V. Lucic)

Markers located
automatically and
aligned using three
manually picked
markers

Re-alignment using
18 markers that are
visible in most
projections
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3D localization

Triangulation: Z-position of markers can be derived by
combining at least two views

Having more views:
 higher accuracy
error estimates
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Patterns of marker motion

In projection 3 In projection 4

Displacements of automarkers against expected position
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Apparent motion of markers

Motion of marker 17 and 11 over all  projections
Evidence for systematic deviations
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Future steps

B Fully automatic acquisition and alignment of marker points

B Acquisition of other prominent features 

B Correction of distortions

B Analysis of virus glycoprotein spike distributions

B With small number of projection views

B Many images automatically analyzed -> statistically significant 
statements about marker distributions
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Outlook

 Central topic: Integrate disparate approaches

 Why? To stay as close as possible to the original data.

 

B Picking / selecting

B Clusterting / classification

B Angular assignment

B Shape / density reconstruction

B Denoising / segmentation
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Future: Probabilistic denoising

IDEA: Nonlinear/anisotropic diffusion and bilateral filtering can be
seen as specializations of a probabilistic model

Similar to clustering
pixels

Segments/denoised
regions are found
by a clustering algorithm
similar to k-means
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Bilateral filter

Very simple algorithm: Smoothing in combined position-value space
Only pixels that are close in position and value
averaged
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Software infrastructure: empiempi

B Python module empi for 
EM image processing
● Basis for new algorithm 

development
● Rapid prototyping
● Easy integration of C++ 

modules
● Supports Itanium 

supercomputing platform
● Integrated programmable 

2D/3D viewer

B Future:
● Fully parallelized alignment 

and projection routines
● Integration with SPARX 

environment



55Ringberg 2007

Conclusions & Outlook

 “Intelligent Systems for Molecular Biology”

 Advanced informatics:

B Learning systems

B Non-linear methods

B Probabilistic models

 Benefits:

B More reliable reconstructions

B Increased resolution

B Less dependence on human interaction -> less bias

B Higher throughput


