

MAX PLANCK SOCIETY

Challenges for Intelligent Image Processing in Electron Microscopy

Christoph Best Max Planck Institut für Biochemie Martinsried, Germany

MIT CSBI, Cambridge, Mass., November 9, 2006

Outline

- ▷ Introduction
- ▷ Tomography
 - ▷ Alignment
 - ▷ Reconstruction

belief networks

- level sets; Monte Carlo algorithms
- Denoising/segmentation anisotropic diffusion; scaling index
- Single-particle analysis **EM** algorithm
 - Automated particle picking
 - Model-free initial models

supervised learning using SVMs

unsupervised learning probabilistic modelling

Electron microscopy

(Macro-)Molecular resolution O(5 nm)

Near-native state: **Cryo**-electron microscopy: Specimen embedded in **vitreous ice**

Problems:

- Beam damage, low dose, high noise
 → denoising
- No fluorescent markers
 → nano-gold markers
- Low penetration (100nm)
 → cryosectioning

Electron tomography

- > 3D reconstruction by taking a series of images from different angles
- ▷ Difficulty:
 - Nanometer accuracy (basically solved, at least for single axis)
- Problems:
 - Limited tilt range
 missing wedge
 - Imperfections of the tilt
 alignment
 - Reconstruction algorithms under high noise

Tomography of eukaryotic cells

PROJECTION

Dictyostelium discoideum

SLICE O. Medalia *et al*, *Science*, 2002

3D imaging on a molecular scale

Mouse adenocarcinoma cell grown on a TEM grid

assembled from 66 images over a 132° range

thickness \approx 520nm

courtesy of Andrew Leis, Martinsried

Viruses

Grünewald & Czyrklaff, *Curr. Opin. Microbiol.,* 2006

Cytoskeleton

Cytoskeleton of Spiroplasma melliferum

J. Kürner et al., Science, 2005

The cytoskeleton of *S. melliferum*

yellow: geodetic line

J. Kürner et al., Science, 2005

Neurobiology applications

Molecules released in the synaptic cleft of a mammalian synapse. (courtesy of V. Lucic, Martinsried).

Structural Biology: The Proteasome

Tomography

Tomographic reconstruction problem:

Find an object consistent with all projections.

Data set size: $\approx 500 \text{ MB}$ Acquisition time: 30 min

Projections

Alignment

- Problem:
 Different images must be shifted/rotated to correspond to a common reference frame
- Strategies:
 - Markers: Add nanogold particles to object, use markers as reference points [manual selection]
 - Features: Select features that can be identified in several images
 - Correlation: for images with overall similarity (based on a Gaussian noise model)

Algorithmic alignment problem

⊳ <u>Given:</u>

projected positions $x^{(n)}(\phi^{(n)})$ taken at angles $\phi^{(n)}$

Determine:

Which marker corresponds to which spots in the different projection images?

- Difficulty: Combinatorial problem but there are good heuristics
- Applications:
 - > Automatic alignment
 - Multiscopic immunomarker registration

Automated tracking

Fernando Amat, Farshid Moussavi, Mark Horowitz:

"Automatic tracking of fiducial markers across very low SNR images", 4ICET, San Diego, 2006

Using a Markov Random Field and Loopy Belief Propagation

Tomographic reconstruction

Classical result: Radon 1917

n-dimensional functions can be reconstructed from their (n-1)-dimensional integrals

Special case: tomography:

integrals (=sums over voxels) along straight rays

- ▷ But how?
 - Simplest algorithm: weighted back projection
 - Iterative algorithms: ART, SIRT

Reconstruction algorithms

Reconstruction problem:

Given a set of projections and their angles, determine the/a 3D density that generates these projections

- Underdetermined problem (less image pixels than voxels in volume) → needs regularization
- Volumes are large: typically 512x512x256 or larger (several 100 MB to GB)
- Classical algorithms are simple: WBP, ART, SIRT

Weighted back projection

Computationally very simple

First-order approximation to true solution

Good enough when many equally spaced projections are taken

Weighted back projection

Missing wedge \rightarrow distortion

Iterative methods

- Iteratively compare observed and calculated projections
- D Update 3D density accordingly
- Classical implementations:
 - ART (algebraic reconstruction technique) projections views processes sequentially
 - SIRT (simultaneous iterative reconstruction) all projections processed in parallel
- Maximum-entropy methods (Skoglund, JSB, 1996)

Room for Improvement

- Iterative algorithms:
 - Conjugate-gradient
- Probabilistic methods:
 - Monte Carlo reconstruction
- Long-term goal: Incorporate previous knowledge
 - Discrete tomography
 - Combine denoising & reconstruction
 - > Algorithms that require fewer projections

Level set reconstruction

- Goal: reconstruct with a small number of views
- ⊳ Idea:
 - Represent shape by a level set function
 - Compare projected outlines to views
 - Accumulate force from each view
 - > Update level set
 - Combines segmentation with reconstruction

Whitaker, Med. Image Anal., 2002

Anisotropic diffusion

- ▷ Why denoising?
 - Not for solving structures!
 - Important for segmentation
 - Useful for visualization
- Physical approach:
 - Diffusion is smoothing
 - Modify diffusion to respect edges
 anisotropy and nonlinearity
- Diffusion constant is determined by local gradient

Anisotropic diffusion

original

denoised

Electron tomographic reconstruction of a DMPC vesicle with actin filaments

R. Grimm, M. Bärmann, W. Häckl, D. Typke, E. Sackmann, W. Baumeister: Biophys. J. 72 (1997) 482-489

Scaling-index method

of points in a sphere
that belong to the object

characterizes the dimensionality of the object

$$N(p_i, r) \propto r^{\alpha}$$

Jamitzky et al, Ultramicroscopy, 2001

Scaling-index segmentation

A. Linaroudis, Ph.D. Thesis, 2006

Manual

Automatic

Single-particle method

Tripeptidyl-peptidase II (TPP II)

courtesy of B. Rockel, Martinsried

Single-particle analysis

- Obtain high resolution by computational averaging of images
- Assemble 2D projection views into a consistent 3D model
- ⊳ <u>Problem</u>:

Orientations of views are unknown → hidden variables problem EM algorithm

Current solution: ad hoc algorithm (EMAN)

Single particle stack

Typically several 1000 to 50000 individual images

Problems:

- Automatic selection of particles
- Alignment
- Classification
- Angular assignment
- 3D reconstruction

EMAN algorithm

EMAN single-particle reconstruction code

Steve Ludtke, Baylor College, Houston, TX

Ad hoc algorithm:

- No proof of convergence
- Local optima?

EM algorithm

Parameter estimation with hidden variables:

Joint probability distribution:

— normal distribution

$$p(I,\phi|V) = \mathcal{N}(I - P_{\phi}V)$$

One parameter (to be estimated):

V = 3D volumetric density

Two random variables:

I = Set of projection images (observed)

 ϕ = Set of projection angles (hidden)

Particle picking

- ▷ Problem:
 - Views are randomly distributed on images
 - Must pick regions with particles from image
- Difficulty: high noise → simple template matching does not work
- ▷ Approach:

Initial picks by linear correlation

Use a Support Vector Machine (SVM) to select for correct particles according to a manually chosen data set

Picking by template matching

Picking by linear correlation

many mis-picks

Apply SVM to pixel vector (reduced) of the images

Coloring: training data set

Support Vector Machines

From Duda et al., Pattern Classification

Machine Learning:

• Training (vs rules)

Support Vector Machine:

- Linear classifier
- Extended to higher polynomials
- Efficient calculation of the separating hyperplane by duality transform

Non-linearity

Linearly inseperable

Linearly separable after introduction of pseudo-variable

Improving picking using SVMs

Improving picking using SVMs

Picking result

Model-free particle classification

- How can we sort the views of a particle according to the viewing angle (elevation, azimuth) ?
- ▷ Answer: Similar angles → similar images
- Probabilistic model:

$$P(M|\phi; M_0, \phi_0) = \left(\frac{1}{2\pi\kappa(|\phi - \phi_0|)}\right)^{D/2} \exp\left(-\frac{|M - M_0|^2}{2\kappa(|\phi - \phi_0|)^2}\right)$$

Angular distance-to-similarity kernel

▷ Probability for an image M given an assigned angle ϕ , a reference image $M^{(0)}$, and a reference angle $\phi^{(0)}$:

Gaussian with a width that gets wider when the images are farther apart.

Self-organizing point map

Doint probability distribution:

$$P(\{M^{(n)}\}|\{\phi^{(n)}\}) = \prod_{i=1}^{N} P(M^{(i)}|\{M^{(i')}, \phi^{(i')}\})$$

$$\begin{split} -\ln L(\phi) &= \\ &\sum_{n,m} \left(\frac{D}{2} \ln 2\pi \kappa (|\phi^{(n)} - \phi^{(m)}|) + \frac{|M^{(n)} - M^{(m)}|^2}{2\kappa (|\phi^{(n)} - \phi^{(m)}|)^2} \right) \\ &\text{Attractive force} \quad \text{Repulsive force} \end{split}$$

Point-to-point potential \rightarrow multidimensional scaling

Gradient descent solution

Similarity matrix

	<u>iktenski</u> st							
<i>©</i> стра								
Alexand a		1.34						
A			C. und	L. site			aller V	19 19 - 535-
	.				W			\bigcirc
		10	1				-	÷
				٠	٠	٠	۲	۲
•	•	•	٠	•	۲	٠	•	•

Pairwise correlation max. over translations and rotations 9x9 projections of TPP2

Correlation matrix:

Result

Good representation of original distribution of viewing angles

Good as an initial model for iterative refinement

Tomographic classification

3D averaging

Nuclear pore complex Matching Aligning Averaging 125 nm 60 nm cytoplasmic filaments cytoplasmic ring lumenal spoke ring nuclear ring nuclear basket

Beck et al., Science, 2004

3D reconstruction

0 nm

distal ring

"Visual proteomics"

- Identify proteins in cryo-electron tomograms of intact cells or cryo-sections
- Pattern matching against a template library
- Map protein interaction landscape in cells
- > High-throughput pipeline

Genome / proteome

Macromolecular crowding

Visual proteomics

Computational pipeline:

"Visual proteomics"

Conclusions

- Cryo-electron tomography allows molecular
 resolution imaging of cells in near live conditions
- Depends heavily on computational methods for reconstruction, denoising, and segmentation.
- Single-particle averaging methods (both 2D and 3D) requires sophisticated pattern recognition, classification, and clustering methods
- Future influences:
 - Probabilistic modelling
 - Monte Carlo algorithms
 - Machine learning

Electron microscope

Price tag: around \$1.5M

Electron micrographs

Thermoplasma acidophilum

No energy filtering

With energy filtering

Gold markers for aligment

Image: C. Kofler, Martinsried

Molecular scale imaging

- Light microscopy: limited by wavelength O(100nm)
- > Alternative probes:
 - ⊳ X-rays
 - ▷ Short wavelength → atomic resolution (< 0.1nm)
 - Low cross-section, difficult optics rightarrow need crystals
 - Electrons:
 - Particle-wave duality, de Broglie wavelength
 - Charged massive particles → high cross section
 - But high damage to specimen \rightarrow low dose
 - High noise

EM algorithm

Estimation step:

$$Q(V|V_0) = \sum_{\phi} p(\phi|I, V) \log p(I, \phi|V)$$

Minimization step:

$$V^{(n+1)} = \max_{V} Q(V|V^{(n)})$$

Differences to ad hoc algorithm:

- $p(\phi|I,V)$ is unity (for assigned angle) or zero (otherwise)