Max-Planck-Institut
für Biochemie

Machine learning for

 single particles

 single particles}

Christoph Best

Max Planck Institut für Biochemie
Martinsried, Germany

Particle picking

\triangleright Problem:
\triangleright Views are randomly distributed on images
\triangleright Must pick regions with particles from image
\triangleright Difficulty: high noise \rightarrow simple template matching does not work
\triangleright Approach:
Initial picks by linear correlation
Use a Support Vector Machine (SVM) to select for correct particles according to a manually chosen data set

Picking by template matching

Picking by
linear correlation
many
mis-picks
Apply SVM
to pixel vector (reduced) of the images

Coloring: training data set

Support Vector Machines

From Duda et al., Pattern Classification

Machine Learning:

- Training (vs rules)

Support Vector Machine:

- Linear classifier
- Extended to higher polynomials
- Efficient calculation of the separating hyperplane by duality transform

Non-linearity

Linearly inseperable

Linearly separable
after introduction of pseudo-variable

Improving picking using SVMs

Receiver operating characteristics for different feature set sizes
M. Tacke, C. Best 2006

Improving picking using SVMs

Receiver operating characteristics for different feature set sizes
[Logarithmic scale]
M. Tacke, C. Best 2006

Picking result

Sorting views into angles

Tripeptidyl-peptidase II (TPP II)
courtesy of B. Rockel, Martinsried

Sorting views into angles

\triangleright Problem:
How can we sort the views of a particle according to the viewing angle (elevation, azimuth) ?
\triangleright Answer:

Similar angles \rightarrow similar images

\triangleright Does not require any knowledge about the actual 3D model!
\triangleright HOW?
Parameter estimation in a probabilistic model

What are Bayesian models?

\triangleright Probability distribution \leftrightarrow Belief about reality
\triangleright What do we know?
Images that correspond to nearby viewing angles should be similar
\triangleright This can be expressed by a probability distribution

$$
P(M \mid \phi)
$$

"Belief that images M are compatible with the angular assignments $\phi^{\prime \prime}$

- Building block:

$$
P\left(M \mid \phi ; M_{0,} \phi_{0}\right)
$$

"Belief that two images are compatible with each other given their angular assignment"

Model-free particle classification

\triangleright Probabilistic model:

$$
\begin{aligned}
& P\left(M \mid \phi ; M_{0}, \phi_{0}\right)= \\
& \quad\left(\frac{1}{2 \pi \kappa\left(\left|\phi-\phi_{0}\right|\right)}\right)^{D / 2} \exp \left(-\frac{\left|M-M_{0}\right|^{2}}{2 \kappa\left(\left|\phi-\phi_{0}\right|\right)^{2}}\right)
\end{aligned}
$$

Angular distance-to-similarity kernel
\triangleright Probability for an image M given an assigned angle ϕ, a reference image $M^{(0)}$, and a reference angle $\phi^{(0)}$:

Gaussian with a width that gets wider when the images are farther apart.

Parameter estimation

\triangleright Problem:
We do know the images - why would we care about their probability distribution?
\triangleright Bayesian parameter estimation:

$$
\mathrm{P}(M \mid \phi) \Leftrightarrow \mathrm{P}(\phi \mid \underset{)}{\text { Images }}
$$

\triangleright This is done using Bayes' formula
\triangleright Simplified version: Maximum-likelihood estimation

$$
\phi=\max \mathrm{P}(M \mid \phi)
$$

The best angular assignments are those which make the images most probable

Self-organizing point map

\triangleright Joint probability distribution:

$$
P\left(\left\{M^{(n)}\right\} \mid\left\{\phi^{(n)}\right\}\right)=\prod_{i=1}^{N} P\left(M^{(i)} \mid\left\{M^{\left(i^{\prime}\right)}, \phi^{\left(i^{\prime}\right)}\right\}\right)
$$

\triangleright Maximum-likelihood principle \rightarrow Hamiltonian:

$$
\begin{aligned}
& -\ln L(\phi)= \\
& \quad \sum_{n, m}\left(\frac{D}{2} \ln 2 \pi \kappa\left(\left|\phi^{(n)}-\phi^{(m)}\right|\right)+\frac{\left|M^{(n)}-M^{(m)}\right|^{2}}{2 \kappa\left(\left.\left|\phi^{(n)}-\phi^{(m)}\right|\right|^{2}\right.}\right) \\
& \text { Attractive force } \quad \text { Repulsive force }
\end{aligned}
$$

Point-to-point potential \rightarrow multidimensional scaling
\triangleright Gradient descent solution

Optimization process

"Spring embedding"
Attractive and repulsive "force" between points (=images)

Minimum (=optimum) is determined by how similar the images appear

Abstract coordinate 1

Similarity matrix

\%-3	+2m	***	ms.	-3.	**	**	**	\cdots
\cdots	\%*	***	-s.	*)	*	*	*	**
\%	ma	2.	2m	-	-	-	*	-*
2	n*	mis	ns	2m	\cdots	\pm	\%	**
n*	nm	Am	\cdots	\cdots	\cdots	\cdots	\cdots	\%
∞	\cdots	\wedge	\pm	\bullet	\cdots	\pm	\cdots	\pm
0	\cdots	ω	ω	ω	ω	\cdots	\checkmark	\cdots
\bullet	-	-	\bullet	\bigcirc	-	-	\bullet	\bigcirc
\bullet	\bullet	\bullet	\bullet	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc

9x9 projections of TPP2

Pairwise correlation max. over translations and rotations

Correlation matrix:

Result

Good representation of original distribution of viewing angles

Good as an initial model for iterative refinement

Tomographic classification

