
Machine learning for

single particles

Christoph Best
Max Planck Institut für Biochemie

Martinsried, Germany

Max-Planck-Institut
für Biochemie

MAX PLANCK SOCIETY

                                                  Berkeley, November 17, 2006



Particle picking

B Problem:

B Views are randomly distributed on images

B Must pick regions with particles from image

B Difficulty: high noise ➜ simple template matching does not 
work

B Approach: 

Initial picks by linear correlation

Use a Support Vector Machine (SVM) to select for 
correct particles according to a manually chosen 
data set



Picking by template matching

Picking by
linear correlation

many
mis-picks

Apply SVM
to pixel vector
(reduced) of
the images

Coloring: training
data set



Support Vector Machines

Machine Learning:
● Training (vs rules)

Support Vector Machine:

● Linear classifier

● Extended to higher polynomials

● Efficient calculation of the
separating hyperplane by
duality transform

From Duda et al., Pattern Classification



Non-linearity

Linearly inseperable
Linearly separable
after introduction of pseudo-variable



Improving picking using SVMs

M. Tacke, C. Best
2006

Receiver
operating
characteristics
for different
feature set 
sizes



Improving picking using SVMs

M. Tacke, C. Best
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operating
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[Logarithmic scale]



Picking result

Ordered by
correlation value



Sorting views into angles

Tripeptidyl-peptidase II
(TPP II)

courtesy of B. Rockel, Martinsried



Sorting views into angles

B Problem:

How can we sort the views of a particle according 
to the viewing angle (elevation, azimuth) ?

B Answer: 

Similar angles ➜ similar images

B Does not require any knowledge about the actual 3D model!

B HOW?

Parameter estimation in a probabilistic model



What are Bayesian models?

B Probability distribution ↔ Belief about reality

B What do we know?

Images that correspond to nearby viewing
angles should be similar

B This can be expressed by a probability distribution

“Belief that images M are compatible with the 
angular assignments Á”

B Building block:

“Belief that two images are compatible with
each other given their angular assignment”

PM ∣

PM ∣ ;M0,0



Model-free particle classification

B Probabilistic model:

B Probability for an image M given an assigned angle Á  , a 
reference image M(0), and a reference angle Á  (0):

Gaussian with a width that gets wider when the 
images are farther apart.

Angular distance-to-similarity kernel



Parameter estimation

B Problem: 

We do know the images – why would we care about their 
probability distribution?

B Bayesian parameter estimation:

P(MjÁ) ,     P(Á|   M)

B This is done using Bayes' formula
B Simplified version: Maximum-likelihood estimation

Á  = max P(MjÁ)

The best angular assignments are those which make
the images most probable

Images

Viewing angles



Self-organizing point map

B Joint probability distribution:

B Maximum-likelihood principle ➜ Hamiltonian:

Point-to-point potential ➜ multidimensional scaling

B Gradient descent solution

Attractive force Repulsive force



Optimization process

“Spring embedding”

Attractive and repulsive
“force” between points
(=images) 

Minimum (=optimum) is
determined by how
similar the images appear
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View 1

View 2

force depends
on similarity of views



Similarity matrix

9x9 projections
of TPP2

Correlation matrix:

Pairwise correlation
max. over translations and 
rotations



Result

Good
representation
of original
distribution of
viewing angles

Good as an
initial model
for iterative
refinement



Tomographic classification


