M ax-Planck-Institute
of Biochemistry

Martinsried, Germany

MAX PLANCK SOC

MATLAB 101

Matrix fun

Christoph Best

March 7, 2005

Concepts. Computers

PROCESSING
UNIT

MEMORY

Memory stores data
(=numbers)

Processing unit
modifies memory
according to a
program

Concepts. Data

All data are numbers.

One byte = Eight binary digits = a number between 0 and 255

0(112|0(1(1|0|0|=108
128 64 32 16 8 4 2 1

Numbers can represent different things:

* Negative numbers: -128 ...+127

* Larger numbers:
* 2 bytes =16 bits =0 ...65536 or -32768 ...32767
* 4 bytes =32 bits =0...4.294.967.296

* Floating-point numbers: 1023 x 10'°
single-precision: 4 bytes, double-precision: 8 bytes

* Characters: 'A’ = 65, 'B’ =66, ... (ASCII)

%

Concepts:. variables

* Variables name memory locations

Workspace = set of all variables visible

Declaration: associate a memory location with a name

Definition: associate a value with a variable

Assignment: replace the value in a variable by a new value

Reference: use the value of a variable in an expression

Concepts. Programs

* Programs consist of statements (= lines)
* Statements are executed in sequences

* Assignment statement:
* left-hand side: a variable to be assigned

* right-hand side: an expression to be evaluated

* Expression:
* Mathematical prescription to calculate a value

* Can contain function calls

Concepts. Control structures

* Not all statements have to be executed in sequence

* Control structures:

* Conditional: execute only if some expression has a certain
value (equals/greater/less)

* Loop: execute repeatedly until a condition is met

Concepts. Functions

* Functions (subroutines)
* Sequence of statements
* Parameters

* Return value

* How a function is called

* Create a workspace for local variables

Evaluate the parameters of the function call

Assign the parameters to local variables

Evaluate the statements of the function

Find the return value and use it as the value of the function call

Matrices

Everything is a matrix (even vectors)

* Indexing: a(1), a(1, 2) one-based
allocation/resizing is automatic

* Construction: [1 3 5],[1 2 3;4 5 6;7 8 9]
zer os(n, m) di ag(n, m)
Empty matrix: [] Vector: 1 xnorn x 1

°* Vectors: 1: 100:1: 0. 1
* Information: si ze(a) ndi ns(a) nel en(a)
* Slices: a(1,:) a(5:10) a(5:10, 5:10)

* Concatenation: [a b] [a; Db] cat (3, a, b)

| ndexing matrices

* Matrices are rectangular, si ze(a) gives their shape

Storage: column-wise (FORTRAN ordering)
1 2 3
4 5 6 | — [147258369]
7 8 9

Linear indexing: [= i1 + ianq + 131119

Indices can be vectors: a(1, 1: 3) a(2, i x)

Linear indexing: flatten dimensions

Logical indexing/masking

Assignments

Operators

Standard math operations: +,-,*,/, "

Vector operations: +, -, . *, ./
Most operations operate element-wise: si n(x)

Matrix multiplication: a * b
Transpose: a’

Relational: <, <=>,>=, ==, =
also operator elementwise: [1 2]==[1 3] —[1 O]

Logical: ~, & | , &&, | |

Functions

Notation: z = f (X, YY)
Multiple returns: [z1, z2] = f(X,Yy)

Math: si n(x), exp(x),abs(x),sqrt(x) ...

Conversions: doubl e(i),int16(i),char(i)
floor(x),ceil (x),fix(x),round(x)

Tests: i sfloat (x),isinteger(x),isenpty(x),...
Constants: pi , NaN, i nf , eps, i, |

Matrices: norm(M ,trace(M,inv(M

Data analysis: m n, nax, nean, medi an, sum cunsum sort

Eigensystems:
D=eig(M or[V,D] = eig(M

Data import and export

Import wizard: interactive

save and | oad for MAT-files

| oad also understands simple ASCII files
| ntead and i mwr i t e for images

t ext scan for tables

xm read, xm write for XML

x|l sread, x| swrit e for spreadsheets
fread, fwite for low-level IO

and of course: t om enr ead, t om enbr owse

Data types

* Basic types
°* integers: int8,uint8,intl6,...,uint32
* floating-point: si ngl e, doubl e
* | ogi cal (boolean)

* char (strings are vectors of char)

* Complex types:
* structures
* cell arrays

* function handles

and, of course, everything is a matrix

Charactersand strings

Strings: * The bi g brown fox’ are vectors of characters

Concatenation: [* The * "big ' "brown ' "fox ']
just as for vectors

Matrices: [* The "; big '; brown ';’ fox ']
must have same length — cell arrays
or create them with char (' The’, big',’ brown’,’ fox’)

Comparison: st rcnp(a, b) 0 signalizes inequality!
Conversion: st r 2num nun2str

Conversion: char ()

Structures

* hashes in Perl, dictionaries in Python, records in Pascal

Used to store heterogeneous data by text labels

Implicit creation: a. x = 1

Explicit creation: struct (’ x’, 1)

Can be nested

Very important for GUI programming

Structures have dimensions too: a(1, 1) . X

Cédll arrays

Lists: Ordered sequences of heterogeneous objects
Represented as matrices of cells (object handles, pointers, ...)
Explicit creation;a = { 'a’, 1, 'c¢’ }

a(1) ={"a}; a(2) ={1}; a(3) ={'c’}

a(l) isacell

a{ 1} is the content of a cell

Cell arrays can be used instead of comma separated lists:
A{ 1: 3} is equivalentto typing A{ 1}, A{ 2}, A{3}
Can be used in vectors, function calls

Plotting data

* Data are plotted into figures and axes

* 2D plots:

pl ot (X, Y)
pl ot (X, sin(X), X, cos(X))

plot([X X],[sin(X)" cos(X)'])
* More commands: axi s, x| abel ,yl abel ,title,grid,...
* Current figure (gcf, fi gur e) and current axes (axes, gca)
* Figure and axes handles: h = fi gure()

* Properties:
get(gca(),’ LinewWdth")
get(gca(),’ Linewdth', 2)
can also be passed at the end:
plot (X, Y, LineWdth, 2)

| mages

Images are matrices

» 2D: values are indices into the current color map
CDataMapping property: direct, scaled

* 3D: RGB values between 0 and 1
Colormaps
| mage(mat)
| magesc(mat) automatically scales

tom i magesc(em

Fourier transforms

* one-dimensional discrette fast Fourier transform (FFT):
* fft(a),inverseifft(a)

* operates column-wise on matrices
* two-dimensional: fft 2(M, inversei fft2(M
* n-dimensional: fftn(M, inversei fftn(M

* fftshift toshift frequence 0 to center of plot

Functionsand M-Files

* Used-defined functions are stored in M-files

* One function per file, file named like the function
(no symbol table, no modules imports)

* Files are looked for in the search path

° Syntax:
function res = name(argq, argo, . . .)
% FUNCTI ON_NANME descri pti on
% nore docunentation
% ...
statements
res = ...

Argument passing

* Arguments are passed by value
even structures and cell arrays
luckily its copy-on-demand

* Several return values:
function [resl,res2] = f(Xx,vy, z)
[a,b] = (1, 2,3)

* Variable number of arguments:
function res = f(x,y,varargin)
var ar gi n{ 1}, cell array nar gi n, number of arguments

* Variable number of outputs:
function varargout = f(x,Vy)
var ar gout { 1}, cell array nar gout , number of desired output
arguments

Types of functions

built-in functions
primary (M-file) functions
subfunctions: only visible in local M-file

nested functions
* declared inside another function (required end)

* statically scoped variables

anonymous functions:

sgr = @x) x.”"2

sgr(5) — 25

can be passed like any other value
also:@ x,y) x™y, @) datestr(now)

Scoping

* Variables in scripts have global scope
* All variables in functions are local

* If you want to modify a value, you must explicitly return it
a = nodi fy(a,’ how)

* Variables are created when first used, destroyed when scope
(function) is exited

* Exception: variables declared global
gl obal a
or persistent (keep value, but local scope)
persistent a
Declare before first use!

Control structures

No concept of blocks
always use end

* Conditional:
| T expr
statements
el se
statements
end
inone line: i f expr; statements; end

* Loop:
for 1 =vector
statements
end

Usually something like for i =1: 10
°* break and conti nue

* While loop: whi | e expr; statements; end

	

